
 283

S E S  2 0 1 3  
N i n t h  S c i e n t i f i c  C o n f e r e n c e  w i t h  I n t e r n a t i o n a l  P a r t i c i p a t i o n  

S P A C E ,  E C O L O G Y ,  S A F E T Y  
20 – 22 November 2013, Sofia, Bulgaria 

 
 

PARALLEL SOLVING OF SITUATIONAL PROBLEMS FOR SPACE MISSION 
ANALYSIS AND DESIGN 

 
Atanas Atanassov 

 
Space Research and Technology Institute – Bulgarian Academy of Sciences 

e-mail: At_M_Atanassov@yahoo.com 
 
 
Keywords: situational analysis, orbital events prediction, parallel calculations, parallel algorithms, multi-

core calculations. 
 

Abstract: The preparations of space missions are based on different kinds of simulations. The design of 
satellite missions demands taking in account many geometrical and physical constrains. The determination of 
time windows of satellite orbital events (suitable for satellite experiments or routine operations) based on 
computer simulation and specific algorithms is known as situational analysis. When complex multi-satellite (with 
multi sensors on every of them) missions are analyzed, many such situation problems are solved for every sensor 
or complex of one type or different type of sensors. Some of situational problem account more than one 
constrains and some of them are connected with many calculations.  

One way for reducing of calculation time for situational problems is parallelization of algorithms and 
using of multi core processors. An idea for situational analysis problems solver based on threads’ parallelism is 
described. Some fragments of program realization in Fortran 95 language are shown. This solver is intended to 
work as subsystem of system for analysis and design of space multi-satellite missions. The solver is developed 
for working on multi core platforms.  

 
 

ПАРАЛЕЛНО РЕШАВАНЕ НА СИТУАЦИОННИ ЗАДАЧИ ПРИ АНАЛИЗ И 
ПРОЕКТИРАНЕ НА КОСМИЧЕСКИ ЕКСПЕРИМЕНТИ 

 
Атанас Атанасов 

 
Институт за космически изследвания и технологии – Българска академия на науките 

 e-mail: At_M_Atanassov@yahoo.com 
 
 

Резюме: Подготовката на космически експерименти се основава на различни видове 
симулации. Проектирането на космически експерименти изисква отчитане на геометрични и 
физически ограничения. Определяне на времеви интервали подходящи за провеждане на експерименти 
и извършване на рутинни операции, основано на компютърни симулации и специални алгоритми е 
известно като ситуационен анализ. При анализ на многоспътникови експерименти (с много уреди на 
всеки от спътниците) ситуационни задачи се решават за всеки уред поотделно или за уреди от 
еднакви или различни типове, участващи в решаването на една или повече научни задачи. Някои от 
ситуационните задачи са свързани с проверка на повече от едно условия, които могат да изискват 
много изчисления. 

Начин за намаляване на изчислителното време за ситуационни задачи е паралелизация на 
алгоритмите и използване на многоядрени процесори. Описана е идея за процесор за решаване на 
ситуационни задачи основан на изчислителни нишки. Показани са фрагменти и подпрограми на Fortran 
95. Този процесор е замислен да работи като подсистема на програмна система за симулации на 
многоспътникови експерименти.  

 
 

Introduction 
 

The simulation of complex satellite missions, related to a broad circle of scientific and 
applicable problems, based on different kind of experiments and determination of suitable condition for 
their performance, demands satisfaction of large number of temporal, angle, spatial, physical and 
other kind of restrictions. Such restrictions are fulfilled on time intervals, while the satellites move by 
their orbits, depending on numerous different parameters of sensors and other instruments, 
parameters of environment (geo-magnetic and electric fields, radiation background), visibilities of the 



 284

Sun and other sky objects. The satisfactions of such restrictions are known as orbital events [1]. The 
time intervals mentioned above are known as “time windows” and play very important role in theory 
and practice of planning and scheduling space missions [2,3]. Determination of suitable for 
performance of space experiments time windows is very important on different stages of missions 
design. 

The analysis for determination of time windows for every scientific problem is known as 
situational analysis (SA) [4]. Many scientific and practical problems lead to many situational problems 
(SP) to be solved, which require significant calculation time. 

A model was presented [5] for description of situational conditions (SC) and SP, which 
includes more than one SC and processor for their solution. 

Paraphrasing Simonsen [6] we can point several reasons the solution of time windows 
prediction problems related to space missions and experiment simulations to require much calculation 
time: 

 

- complex calculation models are used for the calculation of different constraints of the events; 
- simultaneous solving of many time windows prognostication problems are included in a 
simulation model; 

- the investigated time interval (t0,tend) is large; 
- repeatedly solving of events prediction problem for determination of the optimal space 
mission parameters. 

 

Solving of large number SP in the frame of one space mission simulation could be related to 
much overhead and gives possibilities to search optimal solution. One way for acceleration of the 
calculation process is connected with applying of parallel calculations. 

 
Possible ways for parallelization of situational problems solving 
 

Two basic approaches for achieving parallelism in broad circle of problems are possible: 
 

 parallelism across the method; 
 parallelism across the system. 
 

In the case of SA the first approach suppose a presence of possibilities for parallelization in 
the frames of the particular situational conditions. This is possible when particular independent 
segments present in the code, which could be executed in parallel on different processor cores (pipe-
lining), or for some kinds of cycles with independent iterations. 

“Parallelization across the system” is approach which is applicable to complex calculation 
model which could be decomposed on independent parts and every one of them could be executed as 
particular thread. This approach is used exclusively in the present work. 

The second approach contains more potential in cases of SP, because the different conditions in 
the frame of one SP could be calculated on different processor core. When we have many SP then 
every one of them is possible to be solved on different processor. 
 

Situational analysis processors parallelization approach 
 

A processor for solving of situational analysis problem (SAP) was proposed in [5]. It was 
based on: 

 

 model for description of elementary situational condition and situational problems; 
 set of subroutines for every situational condition. 
 

The processor receives set of preliminary defined situational problems and executes them in 
sequential steps of the system time. The different situational problems can be composed from different 
number of situational conditions. Every situational condition is described with specific set of 
parameters. The time for verification of every situational condition and the times for solving of different 
situational problems are different. 

The new parallel version of SAP – parallel situational problem solver (PSPS) is proposed in 
the present paper. It is based on “pool of threads” program model [7]. This model is based on 
portioning of entire problem to particular sub-problems. Every sub-problem is one situational problem 
in our case. The number of solved situational problems could be much larger than the number of 
threads of the pool. The number of threads must be equal or less than the number of processor cores. 
When one thread finishes the execution of one situational problem it attempts to get a new one if there 
are such. In contrast to classical case, here threads compete in the frame of every system time step. 
Additional synchronization is necessary between threads and parent thread.  
 



 285

Program realization 

 

The creation of “pool of threads” is made on appropriate place in the program by special 
subroutine CreateThreadsPool. This is the same subroutine, which is used in our previous studies, 
for initialization of ordinary differential equation systems [8], but now it is made universal and will be 
applied in all analogous cases (fig. 1 and fig. 2). 

 

 
 
Figure 1. Code fragment illustrating creation and initialization of situational analysis solver. The subroutine 

‘Data_Sit_Solver’ prepares data for transferring to solver; the subroutine ‘Preparation_Sit_Solver’ executes 
control functions. 

 

 
 
Figure 2. Code fragments of subroutine ‘Data_Sit_Solver’ and ‘Preparation_Sit_Solver’ 

 
The subroutine, which creates the solver, starts some number of threads. The subroutine 

creates also an event ha_1 which is used for synchronization and control of the threads by getting 
next situational problem (fig. 5) and ensures that there is no doubling and solving the same problem 
from more than one thread. A couple of events are created for every thread, which serve for 
synchronization of their control. One of the events ha_beg (fig. 3, fig. 5) starts execution of every of the 
threads for every step of the system time. Every thread report that the calculations are finished when 
there are not more situational problem for solving by using the second event ha_end (fig. 3, fig. 5). 

external                                    SituationProcessor 
… 
     CALL  CreatePoolThreads(SituationProcessor,num_Sit_threads,Sit_thread_par,Sit_ha_1) 
  ………         
     CALL  Data_Sit_Solver(num_sat,t,dt,xvn,xvk,dTrajectoryParam,sci_task,max_num_sit, & 
                                                                                                                            num_sci_task) 
     CALL  Preparation_Sit_Solver(num_Sit_threads,Sit_thread_par,Sit_ha_1)  
… 
 DO   … 
… 
     CALL  sit_prob (num_sat,t,dt,xvn,xvk,dTrajectoryParam, & 
                                      sci_task,max_num_sit,num_sci_task) !  
… 
 END DO 

ENTRY    Preparation_Sit_Solver(num_SitThreads,thread_par,Sit_ha_1) 
  
ALLOCATE (ha_end(num_SitThreads),     ha_beg(num_SitThreads),STAT=isv2);  
           ha_end(:)= thread_par(4,:); ha_beg(:)= thread_par(3,:); 
 ALLOCATE (ha    (num_SitThreads));    ha    (:)= thread_par(1,:) 
            ha_1= Sit_ha_1;         num_Sit_threads= num_SitThreads 
  DO  i=1,num_SitThreads 
     k1= ResetEvent      (ha_beg(i)) 
     k2= ResumeThread(ha       (i))  
  END DO; num_Sit_threads= num_SitThreads; ha_1= Sit_ha_1 
             Sit_thread_par_adr= LOC(thread_par) ! Sit_thread_par_adr is transfered to buffer  
                                                                           ! subroutine by common area 
  
RETURN 
ENTRY     Data_Sit_Solver(num_sat,t,dt,xvn,xvk,dTrajectoryParam,sci_task, & 
                                                                               max_num_sit,num_sci_task) 
 
        numsat= num_sat; num_sit= max_num_sit; num_task= num_sci_task 
       t_adr= LOC(t);   xvn_adr= LOC(xvn); TrajectParam_adr= LOC(dTrajectoryParam) 
                 dt_adr= LOC(dt); xvk_adr= LOC(xvk);   sci_problem_adr= LOC(sci_task) 
         glb_counter= 0 
  adr_glb_counter= LOC(glb_counter) 
 
RETURN 



 286

A buffer subroutine SituationSolver is used as parameter for creation of threads of the situational 
solver. Addresses of all data for processing and control are transferred to PSPS through this 
subroutine. Global type data are used for transfer of these addresses on this stage. 

 

 
 

Figure 3. The sit_prob is subroutine which serves for synchronization between parent thread and 
threads of the solver and for transfer of control data and results between parent thread and threads 
of the solver. 

 

 
 
Figure 4. The SituationSolver is buffer subroutine which serves to transfer initial control data to solver. 
 
The threads are created in suspended state. When all variables and areas necessary for 

initialization of PSPS are loaded with information, the state of the threads is changed to non-
suspended and their execution begins. Every thread copies transferred information in private storage 
and reaches place in the solver were waits for beginning of the real work connected with solving of 
situational problems.  

SUBROUTINE      SituationSolver(th_id_num) 
  USE DFlib 
  USE DFmt 
     integer                                               th_id_num 
!___Transferred pool control parameters______________________ 
     integer                               Sit_thread_par_adr, ha_1 
     common    /cSit_nth/   num_Sit_threads,Sit_thread_par_adr, ha_1 ! nth- threads number  
     common    /cSit_const/num_sat,max_num_sit,num_sit_prob  ! constant data to buffer 
subroutine 
     integer              t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr,sci_problem_adr 
     common    /cSit_data/ t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr,sci_problem_adr 
     integer                              adr_glb_counter,glb_counter,ha_1l 
     common    /cSitThrdPool/adr_glb_counter 
!__________________________________________________________ 
     integer       thread_par_local(4),thread_par(4,num_Sit_threads) ! 
     AUTOMATIC    ha_1l 
           POINTER(Sit_thread_par_adr,thread_par) 
 
            ha_1l= ha_1 ! locat value of the handler 
    thread_par_local(:)= thread_par(:,th_id_num);   ! Storing tread’s parameters  
                                                                                                      ! in the tread’s stack storage 
 
  CALL  SitProblemsPool(num_sat,t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr, & 
                  sci_problem_adr,max_num_sit,num_sit_prob,thread_par_local,adr_glb_counter,ha_1l) 
 
END SUBROUTINE  SituationSolver 

SUBROUTINE      sit_prob(num_sat,t,dt,xvn,xvk,eps) 
 USE  DFmt 
  real*8                       t,dt,xvn(6,num_sat),xvk(6,num_sat),eps(6,num_sat) 
  common   /cadr_traekt/adr1,adr2,glb_counter,numsat 
… … …   
               glb_counter= 0; 
a: DO  i=1,num_thrd 
        k= SetEvent    (ha_beg(i)) ! Events for start of threads 
   END DO a 
        k= WaitForMultipleObjects(num_thrd, ha_end,WaitAll,Wait_infinite) 
b: DO  i=1,num_thrd 
        k= ResetEvent(ha_end(i)) ! Events for waiting ending of threads 
   END DO b 
… … … 
END SUBROUTINE  sitanal 



 287

Instead of standard calling of particular subroutine, the control of the threads is realized by 
changing the states of the control events of the thread in sit_prob subroutine, which is part from the 
parent thread. This is possible by respective library functions SetEvent and ResetEvent [9]. The 
parent program starts the threads on appropriate place and transits in waiting state until all situational 
problems are solved. A program fragment which illustrates this is shown on figure 3. 

Figure 4 presents the buffer subroutine SituationSolver. All control parameters and data are 
transferred through common areas.  

 

 
 

Figure 5. SitProblemsPool subroutine organizes the synchronizations of the threads with main routine 
in the frame of the pool and calls the real situational processor (subroutine Psitanal). 

 
Figure 5 shows the code of the subroutine SitProblemsPool, which illustrates the joint work 

of the threads in the frame of the pool and all communication processes with the main program. Every 
thread of PSPS calls subroutine Psitanal which solves only one SP. The subroutine Psitanal is 
version of previous serial code subroutine sitanal [5].  

 
 
 

SUBROUTINE      SitProblemsPool(numsat,t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr, & 
                            sci_problem_adr, max_num_sit,num_sit_prob,thread_par,adr_glb_counter,ha_1)
USE DFmt 
 USE  RN 
   integer                             t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr,sci_problem_adr, & 
                                  thread_par(4),adr_glb_counter,ha_1 
! 
  type     (TrajectoryParam)    TrajectParam(numsat) 
  type     (sit_task)                   sci_task(0:max_num_sit,num_sit_prob) !  
   integer               glb_counter 
   integer, AUTOMATIC :: loc_ha_1,ha_beg,ha_end, loc_numsat ! 
   real*8                 t,dt,xvn(6,numsat),xvk(6,numsat) 
     POINTER(t_adr,t);             POINTER(dt_adr,dt) 
     POINTER(xvn_adr,xvn);   POINTER(xvk_adr,xvk); POINTER(sci_problem_adr,sci_task) 
     POINTER(adr_glb_counter,glb_counter);                POINTER(TrajectParam_adr,TrajectParam)
 
            ha_beg= thread_par(3);       ha_end= thread_par(4); ! Stored in the threads’ stack storage 
          loc_ha_1= ha_1;              loc_numsat= numsat;  
 
 DO WHILE(.true.) 
       k=  WaitForSingleObject(ha_beg,WAIT_INFINITE)  ! Event for thread’s starting for time step 
   DO WHILE(glb_counter.LT. num_sit_prob)                           !  
       k= WaitForSingleObject(loc_ha_1,WAIT_INFINITE); ! The event ‘ha_1’ preserves doubling  
                                                                                             ! of situation problem 
                                                                                   ! until current local pointer is formed ‘ha_1’is 
                                                                                   ! made un-signaled automatically 
                        glb_counter= glb_counter + 1;     ! Toward the next situation problem 
 loc_counter= glb_counter;                  ! Storing in local thread’s storage for using as 
pointer 
                  k= SetEvent(loc_ha_1)     ! Allow other thread to may select situation problem  
                                                                        ! if there is 
     IF(loc_counter.GT. num_sit_prob) EXIT 
 
    CALL  Psitanal(loc_numsat,t,dt,xvn,xvk,TrajectParam,sci_task(0,loc_counter),max_num_sit) 
   
   END DO;! 
      k= ResetEvent(ha_beg) ! Prepare the threads’ starting event for the next time step 
      k=     SetEvent(ha_end) ! Signals parent for end of solver threads’ calculations  
 END DO;  
  
END SUBROUTINE  SitProblemsPool 



 288

Conclusion and future work 
 

A stage of development of PSPS, which determines time intervals appropriate for performing 
measurements in the frames of space missions, is proposed. PSPS is intended for parallel 
calculations on platforms with multi-core processors and shared memory systems. At this stage it is 
included in developed program system for simulation of multi-satellite space experiments [5].  

Experiments will be performed for establishment of effectiveness of PSPS by competition with 
other parallel subsystem in the frames of above pointed program system. On this stage, the integrator 
of ordinary differential equation system is the basic competitor for using processor cores. This 
competition is not fully direct because the two subsystems don’t work simultaneous – the results from 
the integrator are used from the situational solver. 

Development of algorithms and codes for new situational conditions are in progress.  
 
References: 
 

1. L e e y, B.-S. and K i m, J.-H., Design and Implementation of the Mission Planning Functions for the 
KOMPSAT-2 Mission Control Element, J. Astron. Space Sci. 20(3), 227–238 (2003) 

2. P e m b e r t o n, J. C., F. A G a l i b e r, constraint-based approach to satellite scheduling. In E.C. Freuder, 
R.J.Wallace (editors), Constraint Programming and Large Scale Discrete Optimization, DIMACS Series 
in Discrete Mathematics and Theoretical Computer Science, 57, pages 101-114, 1998. 

3. H a r r i s o n, S. A., M. E., P r i c e, Task scheduling for satellite based imagery. In Proce. of the Eighteenth 
Workshop of the UK Planning and Scheduling Special Interest Group, pages 64-78, University of Salford, 
UK, December 1999. 

4. P r o k h o r e n k o, V. I., Study of satellite situations mission. Acta Astronautica, v.10 №7, 1983, 499-503. 
5. A t a n a s s o v, A., Program System for Space Missions Simulation - First Stages of Projecting and 

Realization, Proceedings of “Eighth scientific conference - Space Ecology Safety”, 2012, 209-214. 
6. S i m o n s e n, H. H. Exrapolation methods for ODE’s: continuous approximations, a parallel approach, Ph. D. 

thesis, Math. Sci. Div., Norwegian Inst. Of Tech., Trondheim, Norway, 1990. 
7. R a u b e r, T. and R ü n g e r G., Parallel Programming. For Multicore and Cluster Systems, Springer, 2010, 

455. 
8. Digital Visual Fortran Programmer’s Guide. 
9. A t a n a s s o v, A., An Adaptive Parallel Integrator of Ordinary Differential Equations System for Space 

Experiment Simulation, 2012, 203-208. 
 


