S ES 2 013
Ninth Scientific Conference with International Participation
SPACE, ECOLOGY, SAFETY
20 — 22 November 2013, Sofia, Bulgaria

PARALLEL SOLVING OF SITUATIONAL PROBLEMS FOR SPACE MISSION
ANALYSIS AND DESIGN

Atanas Atanassov

Space Research and Technology Institute — Bulgarian Academy of Sciences
e-mail: At_M_Atanassov@yahoo.com

Keywords: situational analysis, orbital events prediction, parallel calculations, parallel algorithms, multi-
core calculations.

Abstract: The preparations of space missions are based on different kinds of simulations. The design of
satellite missions demands taking in account many geometrical and physical constrains. The determination of
time windows of satellite orbital events (suitable for satellite experiments or routine operations) based on
computer simulation and specific algorithms is known as situational analysis. When complex multi-satellite (with
multi sensors on every of them) missions are analyzed, many such situation problems are solved for every sensor
or complex of one type or different type of sensors. Some of situational problem account more than one
constrains and some of them are connected with many calculations.

One way for reducing of calculation time for situational problems is parallelization of algorithms and
using of multi core processors. An idea for situational analysis problems solver based on threads’ parallelism is
described. Some fragments of program realization in Fortran 95 language are shown. This solver is intended to
work as subsystem of system for analysis and design of space multi-satellite missions. The solver is developed
for working on multi core platforms.

NAPAJIE/IHO PEWWABAHE HA CUTYALUUOHHU 3A0AYUN MNMPU AHATIU3 U
NMPOEKTUPAHE HA KOCMUYECKW EKCINMEPUMEHTU

ATaHac AtaHacoB

WHcmumym 3a KocMmu4ecku uscriedsaHusi U mexHonoauu — brreapcka akademus Ha Haykume
e-mail: At_M_Atanassov@yahoo.com

Pe3rome: [loGzomoskama Ha KOCMUYECKU eKCriepuMeHmu ce OCHO8aga Ha pasnuyHu eudose
cumynayuu. [lpoekmupaHemo Ha KOCMUYECKU €eKCMepUMeHmMU Uu3ucKea OmuyumaHe Ha e2eoMempuyHu U
gusuyecku oepaHudeHusi. OnpedernsiHe Ha speMesu UHMepsasnu nodxodswu 3a rnposexoaHe Ha eKcriepuMeHmu
U u3ebpuwieaHe Ha PymuHHU orepayuu, OCHOB8aHO Ha KOMIMMbBbPHU CUuMyniauyuu u creyuanHu ansopummu e
u38€CMHO Kamo cumyauyuoHeH aHanu3. [1pu aHanu3 Ha MHO20CTbIMHUKOB8U eKcriepuMmeHmu (¢ MHO20 ypedu Ha
8CEKU Om CMbMHUUUME) cumyayuoHHU 3adaqu ce pewasam 3a 8ceku yped rnoomoesiHo unu 3a ypedu om
e0Haksu unu pasfuyHU murose, yyacmeauwju 8 pewasaHemo Ha edHa usnu roseye HayyHuU 3adadu. Hskou om
cumyayuoHHUmMe 3adayu ca cebp3aHu C MposepKa Ha rnosedye om eOHO ycrio8usl, KOUMO Mo2am 0a u3uckeam
MHO20 U34YUCIIEHUS.

HayuH 3a HamarnsigaHe Ha U34uCIUMesIHomo epeme 3a CumyauyuoHHU 3adayu e napanenusayusi Ha
aneopummume U U3ron3gaHe Ha MHOe20siI0peHuU rpouecopu. OnucaHa e udesi 3a MPOUEcop 3a pewasaHe Ha
cumyauyuoHHU 3adayu OCHO8aH Ha u34ucriumersnHu HUwku. lNokasaHu ca ¢hpaemeHmu u nodnpozpamu Ha Fortran
95. To3u npouecop e 3amucrieH Oa pabomu kamo rnodcucmema Ha fpozspamMHa cucmema 3a cumynauyuu Ha
MHO20CMTbMHUKO8U eKCriepuMeHmu.

Introduction

The simulation of complex satellite missions, related to a broad circle of scientific and
applicable problems, based on different kind of experiments and determination of suitable condition for
their performance, demands satisfaction of large number of temporal, angle, spatial, physical and
other kind of restrictions. Such restrictions are fulfilled on time intervals, while the satellites move by
their orbits, depending on numerous different parameters of sensors and other instruments,
parameters of environment (geo-magnetic and electric fields, radiation background), visibilities of the

283

Sun and other sky objects. The satisfactions of such restrictions are known as orbital events [1]. The
time intervals mentioned above are known as “time windows” and play very important role in theory
and practice of planning and scheduling space missions [2,3]. Determination of suitable for
performance of space experiments time windows is very important on different stages of missions
design.

The analysis for determination of time windows for every scientific problem is known as
situational analysis (SA) [4]. Many scientific and practical problems lead to many situational problems
(SP) to be solved, which require significant calculation time.

A model was presented [5] for description of situational conditions (SC) and SP, which
includes more than one SC and processor for their solution.

Paraphrasing Simonsen [6] we can point several reasons the solution of time windows
prediction problems related to space missions and experiment simulations to require much calculation
time:

-complex calculation models are used for the calculation of different constraints of the events;

-simultaneous solving of many time windows prognostication problems are included in a
simulation model;

-the investigated time interval (to,tenq) is large;

-repeatedly solving of events prediction problem for determination of the optimal space
mission parameters.

Solving of large nhumber SP in the frame of one space mission simulation could be related to
much overhead and gives possibilities to search optimal solution. One way for acceleration of the
calculation process is connected with applying of parallel calculations.

Possible ways for parallelization of situational problems solving
Two basic approaches for achieving parallelism in broad circle of problems are possible:

— parallelism across the method;
— parallelism across the system.

In the case of SA the first approach suppose a presence of possibilities for parallelization in
the frames of the particular situational conditions. This is possible when particular independent
segments present in the code, which could be executed in parallel on different processor cores (pipe-
lining), or for some kinds of cycles with independent iterations.

“Parallelization across the system” is approach which is applicable to complex calculation
model which could be decomposed on independent parts and every one of them could be executed as
particular thread. This approach is used exclusively in the present work.

The second approach contains more potential in cases of SP, because the different conditions in
the frame of one SP could be calculated on different processor core. When we have many SP then
every one of them is possible to be solved on different processor.

Situational analysis processors parallelization approach

A processor for solving of situational analysis problem (SAP) was proposed in [5]. It was
based on:

— model for description of elementary situational condition and situational problems;
— set of subroutines for every situational condition.

The processor receives set of preliminary defined situational problems and executes them in
sequential steps of the system time. The different situational problems can be composed from different
number of situational conditions. Every situational condition is described with specific set of
parameters. The time for verification of every situational condition and the times for solving of different
situational problems are different.

The new parallel version of SAP — parallel situational problem solver (PSPS) is proposed in
the present paper. It is based on “pool of threads” program model [7]. This model is based on
portioning of entire problem to particular sub-problems. Every sub-problem is one situational problem
in our case. The number of solved situational problems could be much larger than the number of
threads of the pool. The humber of threads must be equal or less than the number of processor cores.
When one thread finishes the execution of one situational problem it attempts to get a new one if there
are such. In contrast to classical case, here threads compete in the frame of every system time step.
Additional synchronization is necessary between threads and parent thread.

284

Program realization

The creation of “pool of threads” is made on appropriate place in the program by special

subroutine CreateThreadsPool. This is the same subroutine, which is used in our previous studies,
for initialization of ordinary differential equation systems [8], but now it is made universal and will be
applied in all analogous cases (fig. 1 and fig. 2).

external SituationProcessor

CALL CreatePoolThreads(SituationProcessor,num_Sit_threads,Sit_thread par,Sit_ha_1)

CALL Data_Sit_Solver(num_sat,t,dt,xvn,xvk,dTrajectoryParam,sci_task,max_num_sit, &
num_sci_task)
CALL Preparation_Sit_Solver(num_Sit_threads,Sit_thread_par,Sit_ha_1)
DO
CALL sit_prob (num_sat,t,dt,xvn,xvk,dTrajectoryParam, &
sci_task,max_num_sit,num_sci_task) !

END DO

Figure 1. Code fragment illustrating creation and initialization of situational analysis solver. The subroutine

‘Data_Sit_Solver’ prepares data for transferring to solver; the subroutine ‘Preparation_Sit_Solver’ executes
control functions.

ENTRY Preparation_Sit_Solver(num_SitThreads,thread_par,Sit_ha_1)

ALLOCATE (ha_end(num_SitThreads), ha_beg(num_SitThreads),STAT=isv2);
ha_end(:)=thread_par(4,:); ha_beg(:)=thread_par(3,:);
ALLOCATE (ha (num_SitThreads)); ha (:)=thread_par(1,:)
ha_1=Sit ha 1; num_Sit_threads= num_SitThreads
DO i=1,num_SitThreads
kl= ResetEvent (ha_beg(i))
k2= ResumeThread(ha 0))
END DO; num_Sit_threads= num_SitThreads; ha_1=Sit ha 1
Sit_thread _par_adr= LOC(thread_par) ! Sit_thread_par_adr is transfered to buffer
I subroutine by common area

RETURN
ENTRY Data_Sit_Solver(num_sat,t,dt,xvn,xvk,dTrajectoryParam,sci_task, &
max_num_sit,num_sci_task)

numsat= num_sat; hum_sit= max_num_sit; num_task= num_sci_task
t adr= LOC(t); xvn_adr=LOC(xvn); TrajectParam_adr= LOC(dTrajectoryParam)
dt_adr= LOC(dt); xvk_adr= LOC(xvk); sci_problem_adr= LOC(sci_task)
glb_counter=0
adr_glb_counter= LOC(glb_counter)

RETURN

Figure 2. Code fragments of subroutine ‘Data_Sit_Solver’ and ‘Preparation_Sit_Solver’

The subroutine, which creates the solver, starts some number of threads. The subroutine

creates also an event ha_1 which is used for synchronization and control of the threads by getting
next situational problem (fig. 5) and ensures that there is no doubling and solving the same problem
from more than one thread. A couple of events are created for every thread, which serve for
synchronization of their control. One of the events ha_beg (fig. 3, fig. 5) starts execution of every of the
threads for every step of the system time. Every thread report that the calculations are finished when
there are not more situational problem for solving by using the second event ha_end (fig. 3, fig. 5).

285

A buffer subroutine SituationSolver is used as parameter for creation of threads of the situational
solver. Addresses of all data for processing and control are transferred to PSPS through this
subroutine. Global type data are used for transfer of these addresses on this stage.

SUBROUTINE sit_prob(num_sat,t,dt,xvn,xvk,eps)
USE DFmt
real*8 t,dt,xvn(6,num_sat),xvk(6,num_sat),eps(6,num_sat)
common /cadr_traekt/adrl,adr2,glb_counter,numsat
glb_counter=0;
a: DO i=1,num_thrd
k= SetEvent (ha_beg(i)) ! Events for start of threads
END DO a
k= WaitForMultipleObjects(num_thrd, ha_end,WaitAll,Wait_infinite)
b: DO i=1,num_thrd
k= ResetEvent(ha_end(i)) ! Events for waiting ending of threads
END DO b

END SUBROUTINE sitanal

Figure 3. The sit_prob is subroutine which serves for synchronization between parent thread and
threads of the solver and for transfer of control data and results between parent thread and threads
of the solver.

SUBROUTINE SituationSolver(th_id_num)

USE DFlib
USE DFmt
integer th_id_num
|___ Transferred pool control parameters
integer Sit_thread_par_adr, ha_1

common /cSit_nth/ num_Sit_threads,Sit_thread par_adr, ha_1 ! nth- threads number
common /cSit_const/num_sat,max_num_sit,num_sit_prob ! constant data to buffer
subroutine

integer t adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr,sci_problem_adr
common /cSit_data/t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr,sci_problem_adr
integer adr_glb_counter,glb_counter,ha_1l

common /cSitThrdPool/adr_glb_counter

integer thread_par_local(4),thread_par(4,num_Sit_threads) !
AUTOMATIC ha_ 1l
POINTER(SIit_thread_par_adr,thread_par)

ha_1l=ha_1!locat value of the handler
thread_par_local(:)= thread_par(;,th_id_num); ! Storing tread’s parameters
l'in the tread’s stack storage

CALL SitProblemsPool(num_sat,t adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr, &
sci_problem_adr,max_num_sit,num_sit_prob,thread_par_local,adr_glb_counter,ha_1l)

END SUBROUTINE SituationSolver

Figure 4. The SituationSolver is buffer subroutine which serves to transfer initial control data to solver.

The threads are created in suspended state. When all variables and areas necessary for
initialization of PSPS are loaded with information, the state of the threads is changed to non-
suspended and their execution begins. Every thread copies transferred information in private storage
and reaches place in the solver were waits for beginning of the real work connected with solving of
situational problems.

286

Instead of standard calling of particular subroutine, the control of the threads is realized by
changing the states of the control events of the thread in sit_prob subroutine, which is part from the
parent thread. This is possible by respective library functions SetEvent and ResetEvent [9]. The
parent program starts the threads on appropriate place and transits in waiting state until all situational
problems are solved. A program fragment which illustrates this is shown on figure 3.

Figure 4 presents the buffer subroutine SituationSolver. All control parameters and data are
transferred through common areas.

SUBROUTINE SitProblemsPool(numsat,t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr, &
sci_problem_adr, max_num_sit,num_sit_prob,thread_par,adr_glb_counter,ha_1)
USE DFmt
USE RN
integer t_adr,dt_adr,xvn_adr,xvk_adr,TrajectParam_adr,sci_problem_adr, &
thread_par(4),adr_glb_counter,ha_1
I
type (TrajectoryParam) TrajectParam(numsat)

type (sit_task) sci_task(0:max_num_sit,num_sit_prob) !

integer glb_counter

integer, AUTOMATIC :: loc_ha_1,ha beg,ha_end, loc_numsat !

real*8 t,dt,xvn(6,numsat),xvk(6,numsat)
POINTER(t_adr,t); POINTER(dt_adr,dt)
POINTER(xvn_adr,xvn); POINTER(xvk_adr,xvk); POINTER(sci_problem_adr,sci_task)
POINTER(adr_glb_counter,glb_counter); POINTER(TrajectParam_adr, TrajectParam)

ha_beg= thread_par(3); ha_end=thread_par(4); ! Stored in the threads’ stack storage
loc_ ha 1=ha 1; loc_numsat= numsat;

DO WHILE(.true.)
k= WaitForSingleObject(ha_beg,WAIT_INFINITE) ! Event for thread'’s starting for time step
DO WHILE(glb_counter.LT. num_sit_prob)
k= WaitForSingleObject(loc_ha_1,WAIT_INFINITE); IThe event ‘ha_1' preserves doubling
I of situation problem
I until current local pointer is formed ‘ha_1'is
I made un-signaled automatically
glb_counter= glb_counter + 1; ! Toward the next situation problem
loc_counter= glb_counter; I Storing in local thread’s storage for using as
pointer
k= SetEvent(loc_ha_1) ! Allow other thread to may select situation problem
lif there is
IF(loc_counter.GT. num_sit_prob) EXIT

CALL Psitanal(loc_numsat,t,dt,xvn,xvk, TrajectParam,sci_task(0,loc_counter),max_num_sit)

END DO;!
k= ResetEvent(ha_beg) ! Prepare the threads’ starting event for the next time step
k= SetEvent(ha_end) ! Signals parent for end of solver threads’ calculations
END DO;

END SUBROUTINE SitProblemsPool

Figure 5. SitProblemsPool subroutine organizes the synchronizations of the threads with main routine
in the frame of the pool and calls the real situational processor (subroutine Psitanal).

Figure 5 shows the code of the subroutine SitProblemsPool, which illustrates the joint work
of the threads in the frame of the pool and all communication processes with the main program. Every
thread of PSPS calls subroutine Psitanal which solves only one SP. The subroutine Psitanal is
version of previous serial code subroutine sitanal [5].

287

Conclusion and future work

A stage of development of PSPS, which determines time intervals appropriate for performing
measurements in the frames of space missions, is proposed. PSPS is intended for parallel
calculations on platforms with multi-core processors and shared memory systems. At this stage it is
included in developed program system for simulation of multi-satellite space experiments [5].

Experiments will be performed for establishment of effectiveness of PSPS by competition with
other parallel subsystem in the frames of above pointed program system. On this stage, the integrator
of ordinary differential equation system is the basic competitor for using processor cores. This
competition is not fully direct because the two subsystems don’'t work simultaneous — the results from
the integrator are used from the situational solver.

Development of algorithms and codes for new situational conditions are in progress.

References:

1. Le ey B.-S. and K i m, J.-H., Design and Implementation of the Mission Planning Functions for the
KOMPSAT-2 Mission Control Element, J. Astron. Space Sci. 20(3), 227-238 (2003)

2. Pemberton,J.C,F. AGaliber, constraint-based approach to satellite scheduling. In E.C. Freuder,
R.J.Wallace (editors), Constraint Programming and Large Scale Discrete Optimization, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 57, pages 101-114, 1998.

3. Harrison,S. A, M. E, Pric e, Task scheduling for satellite based imagery. In Proce. of the Eighteenth
Workshop of the UK Planning and Scheduling Special Interest Group, pages 64-78, University of Salford,
UK, December 1999.

4. Prokhorenko,V.l, Study of satellite situations mission. Acta Astronautica, v.10 Ne7, 1983, 499-503.

5. Atanassov, A, Program System for Space Missions Simulation - First Stages of Projecting and
Realization, Proceedings of “Eighth scientific conference - Space Ecology Safety”, 2012, 209-214.

6. Simonsen,H. H. Exrapolation methods for ODE’s: continuous approximations, a parallel approach, Ph. D.
thesis, Math. Sci. Div., Norwegian Inst. Of Tech., Trondheim, Norway, 1990.

7. Rauber, T.and RingerG., Parallel Programming. For Multicore and Cluster Systems, Springer, 2010,
455.

8. Digital Visual Fortran Programmer’s Guide.

9. Atanassov, A, An Adaptive Parallel Integrator of Ordinary Differential Equations System for Space
Experiment Simulation, 2012, 203-208.

288

